Diagnostic of Cystic Fibrosis in Lung Computer Tomographic Images using Image Annotation and Improved PSPNet Modelling

Dades bibliogràfiques
Parent link:Journal of Physics: Conference Series
Vol. 1611 : Prospects of Fundamental Sciences Development (PFSD-2020).— 2020.— [012062, 6 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Altres autors: Samuel Ragland Francis N. J. Natzina Juanita, Samuel Ragland Francis N. S. Nadine Susanne, Aksenov S. V. Sergey Vladimirovich, Aljasar S. A., Xu Y., Saqib M. Muhammad
Sumari:Title screen
The research deals with the development of an algorithm for detecting pathological formation in cystic fibrosis using the PSPNet model with focal loss. The model allows data sets to be entered in accordance to their similarities based on their pathological diagnostic signs. The simple and effective algorithm structure groups annotated images, processes them in a multiscale CNN, and localizes areas of cystic fibrosis in the lungs with high accuracy.
Idioma:anglès
Publicat: 2020
Matèries:
Accés en línia:https://doi.org/10.1088/1742-6596/1611/1/012062
http://earchive.tpu.ru/handle/11683/63235
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662793