Распознавание моторных образов на электроэнцефалограммахс применением свёрточных нейронных сетей
| Parent link: | Компьютерная оптика: научный журнал/ Институт систем обработки изображений Российской академии наук.— , 1987- Т. 44, № 3.— 2020.— [С. 482-489] |
|---|---|
| Prif Awdur: | |
| Awdur Corfforaethol: | |
| Awduron Eraill: | |
| Crynodeb: | Заглавие с экрана Электроэнцефалография является широко распространенным методом для получения сигналов головного мозга, для снятия которых используются электроды, расположенные на поверхности головы. Такой метод регистрации мозговой активности стал популярен благодаря относительной дешевизне, компактности, а также из-за отсутствия необходимости имплантировать электроды непосредственно в мозг. Статья посвящена проблеме распознавания моторных образов по сигналам электроэнцефалограмм. Природа таких сигналов носит комплексный характер. Характеристики электроэнцефалограмм зависят от самого человека, его возраста, психического состояния, присутствия шумов и помех. При их анализе необходимо учитывать множество таких параметров. Искусственные нейронные сети являются хорошим инструментом в решении такого класса задач. Их применение позволяет объединить задачи извлечения, выбора и классификации признаков в одном блоке обработки сигналов. Электроэнцефалограммы представляют собой временные сигналы. Для представления таких сигналов в виде изображений применяются преобразования на основе матрицы Грама и Марковской матрицы перехода. В статье показана возможность применения этих преобразований для распознавания моторных образов на примере воображаемых движений правой и левой рукой, а также исследовано влияние разрешения получаемых изображений на точность классификации. Наилучшая точность классификации сигнала электроэнцефалограммы на классы движения и состояния покоя составляет порядка 99 %. Результаты исследований в дальнейшем могут быть применены при построении интерфейса мозг - компьютер. Electroencephalography is a widespread method to record brain signals with the use of electrodes located on the surface of the head. This method of recording the brain activity has become popular because it is relatively cheap, compact, and does not require implanting the electrodes directly into the brain. The article is devoted to a problem of recognition of motor imagery by electroencephalogram signals. The nature of such signals is complex. Characteristics of electroencephalograms are individual for every person, also depending on their age and mental state, as well as the presence of noise and interference. The multitude of these parameters should be taken into account when analyzing encephalograms. Artificial neural networks are a good tool for solving this class of problems. Their application allows combining the tasks of extracting, selecting and classifying features in one signal processing unit. Electroencephalograms are time signals and we note that Gramian Angular Fields and Markov Transition Field transforms are used to represent time series in the form of images. The article shows the possibility of using the Gramian Angular Fields and Markov Transition Field transformations of the electroencephalogram (EEG) signal for motor imagery recognition using examples of imaginary movements with the right and left hand, also studying the effect of the resolution of Gramian Angular Fields and Markov Transition Field images on the classification accuracy. The best classification accuracy of the EEG signal into the motion and state-of-rest classes is about 99%. In future, the research results can be applied in constructing the brain-computer interface. |
| Cyhoeddwyd: |
2020
|
| Pynciau: | |
| Mynediad Ar-lein: | https://doi.org/10.18287/2412-6179-CO-669 |
| Fformat: | Electronig Pennod Llyfr |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662676 |