Composite material WC1-x@C as a noble-metal-economic material for hydrogen evolution reaction
| Parent link: | Journal of Alloys and Compounds Vol. 834.— 2020.— [155116, 9 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , , |
| Summary: | Title screen Improving the hydrogen evolution reaction (HER) kinetics for sustainable hydrogen production requires decreasing the usage of noble metals and finding new stable co-catalysts. A new composite material based on cubic tungsten carbide embedded in the carbon matrix (WC1-x@C) was successfully prepared by a simple and scalable method of the plasma dynamic synthesis. The structure and morphology features were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and RAMAN spectroscopy. The as-prepared composite WC1-x@C was found to be able to play a role of a co-catalyst in HER and sufficiently improve its kinetics when modified with a small amount of platinum. The WC1-x@C composite containing only 10 wt% of platinum has almost the same catalytic activity as a commercial Pt/C catalyst. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2020
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.jallcom.2020.155116 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662132 |