The Gross–Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve

Bibliographic Details
Parent link:Symmetry
Vol. 12, iss. 2.— 2020.— [201, 25 p.]
Main Author: Shapovalov A. V. Aleksandr Vasilyevich
Corporate Author: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Other Authors: Kulagin A. E. Anton Evgenievich, Trifonov A. Yu. Andrey Yurievich
Summary:Title screen
We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross–Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimensional manifold (curve) that evolves over time. The approach reduces the Cauchy problem for the nonlocal Gross–Pitaevskii equation to a similar problem for the associated linear equation. The geometric properties of the resulting solutions are related to Maslov’s complex germ, and the symmetry operators of the associated linear equation lead to the approximation of the symmetry operators for the nonlocal Gross–Pitaevskii equation.
Published: 2020
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/64810
https://doi.org/10.3390/sym12020201
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662056