Schwarzian mechanics via nonlinear realizations
| Parent link: | Physics Letters B Vol. 795.— 2019.— [P. 277-280] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Summary: | Title screen The method of nonlinear realizations is used to clarify some conceptual and technical issues related to the Schwarzian mechanics. It is shown that the Schwarzian derivative arises naturally, if one applies the method to SL(2,R)×R group and decides to keep the number of the independent Goldstone fields to a minimum. The Schwarzian derivative is linked to the invariant Maurer-Cartan one-forms, which make its SL(2,R)-invariance manifest. A Lagrangian formulation for a variant of the Schwarzian mechanics studied recently in A. Galajinsky (2018) is built and its geometric description in terms of 4d metric of the ultrahyperbolic signature is given. |
| Published: |
2019
|
| Subjects: | |
| Online Access: | http://earchive.tpu.ru/handle/11683/64860 https://doi.org/10.1016/j.physletb.2019.05.054 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=661915 |