Interaction of Water Droplets in Air Flow at Different Degrees of Flow Turbulence

Enregistré dans:
Détails bibliographiques
Parent link:Journal of Engineering Thermophysics
Vol. 28, iss. 1.— 2019.— [P. 1-13]
Auteur principal: Vysokomornaya O. V. Olga Valeryevna
Autres auteurs: Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Résumé:Title screen
Presented are results of experiments on high-speed video recording of collisions of water droplets in a gas medium as part of aerosol. Parameters of the gas (air) flow and aerosol cloud were monitored using cross-correlation complexes and optical methods of Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, and Shadow Photography. Conditions at different degrees of gas flow turbulence were considered. The characteristic Reynolds numbers ranged from 1100 to 2800. The relative probabilities of coagulation, scattering, and fragmentation of water droplets upon their collisions were calculated. Experimental dependences of probabilistic criteria on parameters of droplets and flow have been obtained for subsequent mathematical modeling. It has been shown that fragmentation and complete breakup of droplets can enable several-fold increase in the relative area of the liquid. The effect of the degree of gas flow turbulence on parameters of recorded processes of interaction of droplets has been established. The results of the experiments were subjected to criterion processing, theWeber and Reynolds numbers taken into account.
Режим доступа: по договору с организацией-держателем ресурса
Langue:anglais
Publié: 2019
Sujets:
Accès en ligne:https://doi.org/10.1134/S1810232819010016
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660955
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Title screen
Presented are results of experiments on high-speed video recording of collisions of water droplets in a gas medium as part of aerosol. Parameters of the gas (air) flow and aerosol cloud were monitored using cross-correlation complexes and optical methods of Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, and Shadow Photography. Conditions at different degrees of gas flow turbulence were considered. The characteristic Reynolds numbers ranged from 1100 to 2800. The relative probabilities of coagulation, scattering, and fragmentation of water droplets upon their collisions were calculated. Experimental dependences of probabilistic criteria on parameters of droplets and flow have been obtained for subsequent mathematical modeling. It has been shown that fragmentation and complete breakup of droplets can enable several-fold increase in the relative area of the liquid. The effect of the degree of gas flow turbulence on parameters of recorded processes of interaction of droplets has been established. The results of the experiments were subjected to criterion processing, theWeber and Reynolds numbers taken into account.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1134/S1810232819010016