Spinning extensions of D(2, 1; α) superconformal mechanics
Parent link: | Journal of High Energy Physics Vol. 2019, iss. 3.— 2019.— [69, 15 p.] |
---|---|
Главный автор: | |
Другие авторы: | |
Примечания: | Title screen As is known, any realization of SU(2) in the phase space of a dynamical system can be generalized to accommodate the exceptional supergroup D(2, 1; α), which is the most general NN = 4 supersymmetric extension of the conformal group in one spatial dimension. We construct novel spinning extensions of D(2, 1; α) superconformal mechanics by adjusting the SU(2) generators associated with the relativistic spinning particle coupled to a spherically symmetric Einstein-Maxwell background. The angular sector of the full superconformal system corresponds to the orbital motion of a particle coupled to a symmetric Euler top, which represents the spin degrees of freedom. This particle moves either on the two-sphere, optionally in the external field of a Dirac monopole, or in the SU(2) group manifold. Each case is proven to be superintegrable, and explicit solutions are given. |
Язык: | английский |
Опубликовано: |
2019
|
Предметы: | |
Online-ссылка: | http://earchive.tpu.ru/handle/11683/57335 https://doi.org/10.1007/JHEP03(2019)069 |
Формат: | Электронный ресурс Статья |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660166 |