Photothermal coherence tomography for 3-D visualization and structural non-destructive imaging of a wood inlay

Bibliographic Details
Parent link:Infrared Physics & Technology
Vol. 91.— 2018.— [P. 206-213]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Other Authors: Tavakolian P. Pantea, Sfarra S. Stefano, Gargiulo G. Gianfranco, Sivagurunathan K. Koneshwaran, Mandelis A. Andreas
Summary:Title screen
The aim of this research is to investigate the suitability of truncated correlation photothermal coherence tomography (TC-PCT) for the non-destructive imaging of a replica of a real inlay to identify subsurface features that often are invisible areas of vulnerability and damage. Defects of inlays involve glue-rich areas, glue-starved areas, termite attack, insect damage, and laminar splitting. These defects have the potential to result in extensive damage to the art design layers of inlays. Therefore, there is a need for an imaging technique to visualize and determine the location of defects within the sample. The recently introduced TC-PCT modality proved capable of providing 3-D images of specimens with high axial resolution, deep subsurface depth profiling capability, and high signal-to-noise ratio (SNR). Therefore, in this study the authors used TC-PCT to image a fabricated inlay sample with various natural and artificial defects in the middle and top layers. The inlay in question reproduces to scale a piece of art preserved in the “Mirror room” of the Castle Laffitte in France. It was built by a professional restorer following the ancient procedure named element by element. Planar TC-PCT images of the inlay were stacked coherently to provide 3-D visualization of areas with known defects in the sample. The experimental results demonstrated the identification of defects such as empty holes, a hole filled with stucco, subsurface delaminations and natural features such as a wood knot and wood grain in different layers of the sample. For this wooden sample that has a very low thermal diffusivity, a depth range of 2?mm was achieved.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2018
Subjects:
Online Access:https://doi.org/10.1016/j.infrared.2018.04.018
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659070