Spectral estimates of the p-Laplace Neumann operator and Brennan's conjecture

Bibliographic Details
Parent link:Bollettino dell'Unione Matematica Italiana
Vol. 11, iss. 2.— 2018.— [P. 245-264]
Main Author: Gol’dshtein V. M. Vladimir
Corporate Author: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Other Authors: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Alexander Dadaroolovich
Summary:Title screen
In this paper we obtain lower estimates for the first non-trivial eigenvalue of the p-Laplace Neumann operator in bounded simply connected planar domains Ω⊂R2Ω⊂R2. This study is based on a quasiconformal version of the universal two-weight Poincaré-Sobolev inequalities obtained in our previous papers for conformal weights and its non weighted version for so-called K-quasiconformal αα-regular domains. The main technical tool is the geometric theory of composition operators in relation with the Brennan's conjecture for (quasi)conformal mappings.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1007/s40574-017-0127-z
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658513