Clarkson’s inequalities for periodic Sobolev space

Bibliographic Details
Parent link:Lobachevskii Journal of Mathematics.— , 1998-
Vol. 38, iss. 6.— 2017.— [P. 1146–1155]
Main Author: Korytov I. V. Igor Vitalievich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ)
Summary:Title screen
The validity of Clarkson’s inequalities for periodic functions in the Sobolev space normed without the use of pseudodifferential operators is proved. The norm of a function is defined by using integrals over a fundamental domain of the function and its generalized partial derivatives of all intermediate orders. It is preliminarily shown that Clarkson’s inequalities hold for periodic functions integrable to some power p over a cube of unit measure with identified opposite faces. The work is motivated by the necessity of developing foundations for the functional-analytic approach to evaluating approximation methods.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1134/S1995080217060178
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657462