Femtosecond response time measurements of a Cs2Te photocathode
| Parent link: | Applied Physics Letters.— , 1962- Vol. 110, iss. 3.— 2017.— [033508, 6 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , |
| Summary: | Title screen Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometertype pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2017
|
| Subjects: | |
| Online Access: | https://doi.org/10.1063/1.4994224 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657238 |