Микромеханическая модель эволюции деформационного рельефа в поликристаллических материалах
| Parent link: | Физическая мезомеханика/ Российская академия наук (РАН), Сибирское отделение (СО), Институт физики прочности и материаловедения (ИФПМ).— , 1998- Т. 20, № 3.— 2017.— [С. 81-90] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , |
| Summary: | Заглавие с экрана Предложена микромеханическая модель, описывающая формирование и эволюцию деформационного рельефа на поверхности поликристаллических материалов. Для учета деформационных процессов на микро- и мезоуровнях трехмерная поликристаллическая структура моделируется в явном виде с учетом кристаллографической ориентации зерен. Определяющие соотношения для описания отклика зерен построены на основе физической теории пластичности кристаллов, учитывающей анизотропию упругопластических свойств, обусловленную особенностями кристаллического строения. С использованием предложенной микромеханической модели численно исследованы процессы эволюции деформационного рельефа в микрообъемах поликристаллического алюминия и титана в условиях одноосного растяжения. Показано, что в обоих случаях можно выделить два характерных масштаба рельефных образований. На микроуровне нормальные смещения относительно свободной поверхности обусловлены появлением дислокационных ступенек в зернах, выходящих на поверхность, и относительным смещением соседних зерен друг относительно друга. Более развитый микрорельеф наблюдается в титане, что обусловлено высоким уровнем упругопластической анизотропии, характерной для ГПУ-кристаллов. Рельефные образования на мезоуровне представляют собой складки и кластерообразные структуры, в формирование которых вовлекаются целые группы зерен. Для количественной оценки рельефных образований использован безразмерный параметр - интенсивность деформационного рельефа, отражающий степень отклонения формы поверхности от плоскости. Получена экспоненциальная зависимость интенсивности деформационного рельефа от степени деформации. A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes ridges and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2017
|
| Subjects: | |
| Online Access: | https://elibrary.ru/item.asp?id=29364111 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657218 |