Effect of the axial magnetic field on a metallic gas-puff pinch implosion
| Parent link: | Physics of Plasmas Vol. 23, iss. 6.— 2016.— [063502, 6 р.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , , |
| Summary: | Title screen The effect of an axial magnetic field Bz on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field Bz was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh-Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for Bz < 1.1 T. For Bz = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation. Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
2016
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1063/1.4953048 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653149 |