Face recognition based on the proximity measure clustering
Parent link: | Компьютерная оптика: научный журнал/ Институт систем обработки изображений Российской академии наук.— , 1987- Т. 40, № 5.— 2016.— [P. 740-745] |
---|---|
主要作者: | |
其他作者: | , |
总结: | Title Screen In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented. Режим доступа: по договору с организацией-держателем ресурса |
语言: | 英语 |
出版: |
2016
|
丛编: | Image Processing, Pattern Recognition |
主题: | |
在线阅读: | http://elibrary.ru/item.asp?id=27425383 http://earchive.tpu.ru/handle/11683/36151 |
格式: | 电子 本书章节 |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652454 |