Face recognition based on the proximity measure clustering

Bibliographische Detailangaben
Parent link:Компьютерная оптика: научный журнал/ Институт систем обработки изображений Российской академии наук.— , 1987-
Т. 40, № 5.— 2016.— [P. 740-745]
1. Verfasser: Nemirovskiy V. B. Viktor Borisovich
Weitere Verfasser: Stoyanov A. K. Aleksandr Kirillovich, Goremykina D. S. Darjya Sergeevna
Zusammenfassung:Title Screen
In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented.
Режим доступа: по договору с организацией-держателем ресурса
Sprache:Englisch
Veröffentlicht: 2016
Schriftenreihe:Image Processing, Pattern Recognition
Schlagworte:
Online-Zugang:http://elibrary.ru/item.asp?id=27425383
http://earchive.tpu.ru/handle/11683/36151
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652454