Face recognition based on the proximity measure clustering

Bibliographic Details
Parent link:Компьютерная оптика: научный журнал/ Институт систем обработки изображений Российской академии наук.— , 1987-
Т. 40, № 5.— 2016.— [P. 740-745]
Main Author: Nemirovskiy V. B. Viktor Borisovich
Other Authors: Stoyanov A. K. Aleksandr Kirillovich, Goremykina D. S. Darjya Sergeevna
Summary:Title Screen
In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2016
Series:Image Processing, Pattern Recognition
Subjects:
Online Access:http://elibrary.ru/item.asp?id=27425383
http://earchive.tpu.ru/handle/11683/36151
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652454