Face recognition based on the proximity measure clustering

Dades bibliogràfiques
Parent link:Компьютерная оптика: научный журнал/ Институт систем обработки изображений Российской академии наук.— , 1987-
Т. 40, № 5.— 2016.— [P. 740-745]
Autor principal: Nemirovskiy V. B. Viktor Borisovich
Altres autors: Stoyanov A. K. Aleksandr Kirillovich, Goremykina D. S. Darjya Sergeevna
Sumari:Title Screen
In this paper problems of featureless face recognition are considered. The recognition is based on clustering the proximity measures between the distributions of brightness clusters cardinality for segmented images. As a proximity measure three types of distances are used in this work: the Euclidean, cosine and Kullback-Leibler distances. Image segmentation and proximity measure clustering are carried out by means of a software model of the recurrent neural network. Results of the experimental studies of the proposed approach are presented.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2016
Col·lecció:Image Processing, Pattern Recognition
Matèries:
Accés en línia:http://elibrary.ru/item.asp?id=27425383
http://earchive.tpu.ru/handle/11683/36151
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652454