Bimetal Al–Ni nano-powders for energetic formulations
| Parent link: | Combustion and Flame Vol. 173.— 2016.— [P. 179-186] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , , , |
| Summary: | Title screen Four bimetal Al–Ni nano-powders with compositions varied from 5 to 45 at% of nickel were synthesized by explosion of electrically heated twisted pure Al and Ni wires in argon. The nano-powders were characterized using electron microscopy, x-ray diffraction, and thermal analysis. Materials were ignited using an electrically heated filament coated with powder and electrostatic discharge (ESD). The results were compared to those for pure nano-aluminum powder (n-Al) prepared using the same wire explosion technique. The nano-powders with high nickel concentrations contain fully reacted intermetallic phases, which are difficult to oxidize making them unattractive for energetic formulations. Nano-powders with lower nickel concentrations do not contain significant amounts of the intermetallic phases. No intermetallics were detected in the powder with 5 at% Ni, which oxidized qualitatively similar to n-Al. The overall mass gain during oxidation for the bimetal powder was nearly identical to that of n-Al, suggesting the same heat release anticipated from their combustion. Oxidation kinetics assessed for this material accounting directly for the measured particle size distribution was compared to that of n-Al. The bimetal powder oxidized slower than n-Al, indicating its greater stability during handling and storage. The bimetal powder was less ESD-ignition sensitive than n-Al, but generated a stronger emission signal when ignited. Therefore, the bimetal powder with 5 at% Ni is an attractive replacement of n-Al for advanced energetics with lower ESD sensitivity, better stability, and improved combustion performance. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2016
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1016/j.combustflame.2016.08.015 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=650529 |