On conjectures by Csordas, Charalambides and Waleffe

Bibliografske podrobnosti
Parent link:Proceedings of the American Mathematical Society
Vol. 144, iss. 5.— 2016.— [P. 2037-2052]
Glavni avtor: Dyachenko A. V. Alexander
Korporativna značnica: Национальный исследовательский Томский политехнический университет Физико-технический институт Кафедра высшей математики и математической физики
Drugi avtorji: Van Bevern G. A. Galina Aleksandrovna
Izvleček:Title screen
In the present note we obtain new results on two conjectures by Csordas et al. regarding the interlacing property of zeros of special polynomials. These polynomials came from the Jacobi tau methods for the Sturm-Liouville eigenvalue problem. Their coefficients are the successive even derivatives of the Jacobi polynomials evaluated at the point one. The first conjecture states that the polynomials constructed from and are interlacing when and . We prove it in a range of parameters wider than that given earlier by Charalambides and Waleffe. We also show that within narrower bounds another conjecture holds. It asserts that the polynomials constructed from and are also interlacing.
Режим доступа: по договору с организацией-держателем ресурса
Izdano: 2016
Teme:
Online dostop:http://dx.doi.org/10.1090/proc/12861
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=649711

Podobne knjige/članki