On conjectures by Csordas, Charalambides and Waleffe

Bibliographic Details
Parent link:Proceedings of the American Mathematical Society
Vol. 144, iss. 5.— 2016.— [P. 2037-2052]
Main Author: Dyachenko A. V. Alexander
Corporate Author: Национальный исследовательский Томский политехнический университет Физико-технический институт Кафедра высшей математики и математической физики
Other Authors: Van Bevern G. A. Galina Aleksandrovna
Summary:Title screen
In the present note we obtain new results on two conjectures by Csordas et al. regarding the interlacing property of zeros of special polynomials. These polynomials came from the Jacobi tau methods for the Sturm-Liouville eigenvalue problem. Their coefficients are the successive even derivatives of the Jacobi polynomials evaluated at the point one. The first conjecture states that the polynomials constructed from and are interlacing when and . We prove it in a range of parameters wider than that given earlier by Charalambides and Waleffe. We also show that within narrower bounds another conjecture holds. It asserts that the polynomials constructed from and are also interlacing.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2016
Subjects:
Online Access:http://dx.doi.org/10.1090/proc/12861
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=649711