Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field
Parent link: | IOP Conference Series: Materials Science and Engineering Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015).— 2016.— [012081, 6 p.] |
---|---|
其他作者: | , , , |
總結: | Title screen The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods. |
語言: | 英语 |
出版: |
2016
|
叢編: | Numerical Simulation of Applied Problems |
主題: | |
在線閱讀: | http://dx.doi.org/10.1088/1757-899X/124/1/012081 http://earchive.tpu.ru/handle/11683/33858 |
格式: | 電子 Book Chapter |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648548 |
MARC
LEADER | 00000nla2a2200000 4500 | ||
---|---|---|---|
001 | 648548 | ||
005 | 20240406180300.0 | ||
035 | |a (RuTPU)RU\TPU\network\13707 | ||
035 | |a RU\TPU\network\13701 | ||
090 | |a 648548 | ||
100 | |a 20160524a2016 k y0engy50 ba | ||
101 | 0 | |a eng | |
102 | |a GB | ||
105 | |a y z 100zy | ||
135 | |a drgn ---uucaa | ||
181 | 0 | |a i | |
182 | 0 | |a b | |
200 | 1 | |a Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field |f G. V. Nosov, E. O. Kuleshova, Yu. Z. Vasiljeva (Vassilyeva), A. I. Elizarov | |
203 | |a Text |c electronic | ||
225 | 1 | |a Numerical Simulation of Applied Problems | |
300 | |a Title screen | ||
320 | |a [References: 8 tit.] | ||
330 | |a The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods. | ||
461 | 0 | |0 (RuTPU)RU\TPU\network\2008 |t IOP Conference Series: Materials Science and Engineering | |
463 | 0 | |0 (RuTPU)RU\TPU\network\13617 |t Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015) |o International Conference, 1–4 December 2015, Tomsk, Russia |o [proceedings] |v [012081, 6 p.] |d 2016 | |
610 | 1 | |a электронный ресурс | |
610 | 1 | |a труды учёных ТПУ | |
610 | 1 | |a ферромагнитные проводники | |
610 | 1 | |a гармонические поля | |
610 | 1 | |a электромагнитные поля | |
610 | 1 | |a поверхностные слои | |
610 | 1 | |a нагрев | |
610 | 1 | |a магнитная индукция | |
610 | 1 | |a диэлектрическая проницаемость | |
610 | 1 | |a тепловая энергия | |
610 | 1 | |a электромагнитные экраны | |
610 | 1 | |a роторы | |
610 | 1 | |a электрические машины | |
610 | 1 | |a нагревательные установки | |
701 | 1 | |a Nosov |b G. V. |c specialist in the field of electrical engineering |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences |f 1954- |g Gennady Vasilievich |3 (RuTPU)RU\TPU\pers\36815 |9 19844 | |
701 | 1 | |a Kuleshova |b E. O. |c specialist in electrical engineering |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences |f 1976- |g Elena Olegovna |3 (RuTPU)RU\TPU\pers\33730 |9 17361 | |
701 | 1 | |a Vasiljeva (Vassilyeva) |b Yu. Z. |c specialist in the field of electric power engineering |c Researcher, Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences |f 1995- |g Yuliya Zakharovna |y Tomsk |3 (RuTPU)RU\TPU\pers\46740 |9 22376 | |
701 | 1 | |a Elizarov |b A. I. | |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Энергетический институт (ЭНИН) |b Кафедра электрических сетей и электротехники (ЭСиЭ) |3 (RuTPU)RU\TPU\col\18677 |
801 | 2 | |a RU |b 63413507 |c 20210128 |g RCR | |
856 | 4 | |u http://dx.doi.org/10.1088/1757-899X/124/1/012081 | |
856 | 4 | |u http://earchive.tpu.ru/handle/11683/33858 | |
942 | |c CF |