Natural Convection in a Wavy Porous Cavity With Sinusoidal Temperature Distributions on Both Side Walls Filled With a Nanofluid: Buongiornos Mathematical Model

Bibliographic Details
Parent link:Journal of Heat Transfer
Vol. 137, iss. 7.— 2015.— [072601]
Main Author: Sheremet M. A. Mikhail Aleksandrovich
Corporate Author: Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра атомных и тепловых электростанций
Other Authors: Pop I.
Summary:Title screen
A numerical study of the natural convection flow in a porous cavity with wavy bottom and top walls having sinusoidal temperature distributions on vertical walls filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation and the Buongiorno's nanofluid model. The boundary-value problem has been solved numerically on the basis of a second-order accurate finite difference method. Efforts have been focused on the effects of five types of influential factors such as the Rayleigh (Ra?=?10–300) and Lewis (Le?=?1–1000) numbers, the buoyancy-ratio parameter (Nr?=?0.1–0.4), the Brownian motion parameter (Nb?=?0.1–0.4), and the thermophoresis parameter (Nt?=?0.1–0.4) on the fluid flow and heat transfer characteristics. It has been found that the average Nusselt and Sherwood numbers are increasing functions of the Rayleigh number, buoyancy- ratio parameter, and thermophoresis parameter, and decreasing functions of the Lewis number and Brownian motion parameter.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2015
Subjects:
Online Access:http://dx.doi.org/10.1115/1.4029816
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648104