A Micromechanical Model for the Deformation Behavior of Titanium Polycrystals
| Parent link: | AIP Conference Proceedings Vol. 1683 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures.— 2015.— [020194, 4 p.] |
|---|---|
| निगमित लेखक: | |
| अन्य लेखक: | , , , |
| सारांश: | Title screen A microstructure-based constitutive model for a polycrystalline titanium alloy is constructed on the basis of anisotropic elasticity and crystal plasticity theory, with allowance made for the prismatic and basal slip systems. A three-dimensional polycrystalline structure consisting of 1600 grains is designed by a step-by-step packing method and introduced explicitly into finite-element calculations. Numerical modeling of uniaxial tension is performed using Abaqus/Explicit. Grains unfavorably oriented to the loading axis are shown to remain elastic, while slip occurs in the neighboring grains. As this takes place, rotational modes of deformation are activated in addition to shear strain (translational) modes, and surface grains with a low ability to yield demonstrate a tendency towards extrusion. Режим доступа: по договору с организацией-держателем ресурса |
| प्रकाशित: |
2015
|
| विषय: | |
| ऑनलाइन पहुंच: | http://dx.doi.org/10.1063/1.4932884 |
| स्वरूप: | इलेक्ट्रोनिक पुस्तक अध्याय |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=645000 |