Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion
Parent link: | Russian Physics Journal: Scientific Journal.— , 1965- Vol. 58, iss. 3.— 2015.— [P. 399-409] |
---|---|
מחבר ראשי: | |
מחברים אחרים: | , |
סיכום: | Title screen Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry. Режим доступа: по договору с организацией-держателем ресурса |
שפה: | אנגלית |
יצא לאור: |
2015
|
סדרה: | Elementary particle physics and field theory |
נושאים: | |
גישה מקוונת: | http://dx.doi.org/10.1007/s11182-015-0514-9 |
פורמט: | אלקטרוני Book Chapter |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110 |
MARC
LEADER | 00000nla0a2200000 4500 | ||
---|---|---|---|
001 | 644110 | ||
005 | 20250304141419.0 | ||
035 | |a (RuTPU)RU\TPU\network\9159 | ||
090 | |a 644110 | ||
100 | |a 20151028d2015 k||y0rusy50 ba | ||
101 | 0 | |a eng | |
135 | |a drcn ---uucaa | ||
181 | 0 | |a i | |
182 | 0 | |a b | |
200 | 1 | |a Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion |f A. A. Prozorov, A. Yu. Trifonov, A. V. Shapovalov | |
203 | |a Text |c electronic | ||
225 | 1 | |a Elementary particle physics and field theory | |
300 | |a Title screen | ||
320 | |a [References: p. 409 (22 tit.)] | ||
330 | |a Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry. | ||
333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
461 | |t Russian Physics Journal |o Scientific Journal |d 1965- | ||
463 | |t Vol. 58, iss. 3 |v [P. 399-409] |d 2015 | ||
610 | 1 | |a электронный ресурс | |
610 | 1 | |a труды учёных ТПУ | |
610 | 1 | |a nonlocal fisher | |
610 | 1 | |a anomalous diffusion | |
610 | 1 | |a asymmetric solutions | |
700 | 1 | |a Prozorov |b A. A. |c mathematician |c Laboratory assistant of Tomsk Polytechnic University |f 1994- |g Alexander Andreevich |3 (RuTPU)RU\TPU\pers\32696 | |
701 | 1 | |a Trifonov |b A. Yu. |c physicist, mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963- |g Andrey Yurievich |3 (RuTPU)RU\TPU\pers\30754 | |
701 | 1 | |a Shapovalov |b A. V. |c mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1949- |g Aleksandr Vasilyevich |3 (RuTPU)RU\TPU\pers\31734 | |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Кафедра высшей математики и математической физики (ВММФ) |3 (RuTPU)RU\TPU\col\18727 |
801 | 2 | |a RU |b 63413507 |c 20151028 |g RCR | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s11182-015-0514-9 |
942 | |c CF |