Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion

מידע ביבליוגרפי
Parent link:Russian Physics Journal: Scientific Journal.— , 1965-
Vol. 58, iss. 3.— 2015.— [P. 399-409]
מחבר ראשי: Prozorov A. A. Alexander Andreevich
מחברים אחרים: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
סיכום:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
שפה:אנגלית
יצא לאור: 2015
סדרה:Elementary particle physics and field theory
נושאים:
גישה מקוונת:http://dx.doi.org/10.1007/s11182-015-0514-9
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110

MARC

LEADER 00000nla0a2200000 4500
001 644110
005 20250304141419.0
035 |a (RuTPU)RU\TPU\network\9159 
090 |a 644110 
100 |a 20151028d2015 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion  |f A. A. Prozorov, A. Yu. Trifonov, A. V. Shapovalov 
203 |a Text  |c electronic 
225 1 |a Elementary particle physics and field theory 
300 |a Title screen 
320 |a [References: p. 409 (22 tit.)] 
330 |a Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Russian Physics Journal  |o Scientific Journal  |d 1965- 
463 |t Vol. 58, iss. 3  |v [P. 399-409]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a nonlocal fisher 
610 1 |a anomalous diffusion 
610 1 |a asymmetric solutions 
700 1 |a Prozorov  |b A. A.  |c mathematician  |c Laboratory assistant of Tomsk Polytechnic University  |f 1994-  |g Alexander Andreevich  |3 (RuTPU)RU\TPU\pers\32696 
701 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра высшей математики и математической физики (ВММФ)  |3 (RuTPU)RU\TPU\col\18727 
801 2 |a RU  |b 63413507  |c 20151028  |g RCR 
856 4 0 |u http://dx.doi.org/10.1007/s11182-015-0514-9 
942 |c CF