Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion

Бібліографічні деталі
Parent link:Russian Physics Journal: Scientific Journal.— , 1965-
Vol. 58, iss. 3.— 2015.— [P. 399-409]
Автор: Prozorov A. A. Alexander Andreevich
Інші автори: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
Резюме:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
Мова:Англійська
Опубліковано: 2015
Серія:Elementary particle physics and field theory
Предмети:
Онлайн доступ:http://dx.doi.org/10.1007/s11182-015-0514-9
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110