Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion

書目詳細資料
Parent link:Russian Physics Journal: Scientific Journal.— , 1965-
Vol. 58, iss. 3.— 2015.— [P. 399-409]
主要作者: Prozorov A. A. Alexander Andreevich
其他作者: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
總結:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
語言:英语
出版: 2015
叢編:Elementary particle physics and field theory
主題:
在線閱讀:http://dx.doi.org/10.1007/s11182-015-0514-9
格式: 電子 Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110
實物特徵
總結:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s11182-015-0514-9