Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion

書誌詳細
Parent link:Russian Physics Journal: Scientific Journal.— , 1965-
Vol. 58, iss. 3.— 2015.— [P. 399-409]
第一著者: Prozorov A. A. Alexander Andreevich
その他の著者: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
要約:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
言語:英語
出版事項: 2015
シリーズ:Elementary particle physics and field theory
主題:
オンライン・アクセス:http://dx.doi.org/10.1007/s11182-015-0514-9
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110
その他の書誌記述
要約:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s11182-015-0514-9