Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion

מידע ביבליוגרפי
Parent link:Russian Physics Journal: Scientific Journal.— , 1965-
Vol. 58, iss. 3.— 2015.— [P. 399-409]
מחבר ראשי: Prozorov A. A. Alexander Andreevich
מחברים אחרים: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
סיכום:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
שפה:אנגלית
יצא לאור: 2015
סדרה:Elementary particle physics and field theory
נושאים:
גישה מקוונת:http://dx.doi.org/10.1007/s11182-015-0514-9
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644110
תיאור
סיכום:Title screen
Asymptotic solutions of the nonlocal, one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation with fractional derivatives in the diffusion operator are constructed. The fractional derivative is defined in accordance with the approaches of Weyl, Grьnwald–Letnilkov, and Liouville. Asymptotic solutions are constructed in a class of functions that are a perturbation of the found exact quasistationary solution and tend at large times to this quasistationary solution. It is shown that the presence of fractional derivatives leads to drift of the center of mass of the initial distribution and breaks its symmetry.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s11182-015-0514-9