Effect of the anisotropy of monocrystalline silicon mechanical properties on the dynamic characteristics of a micromechanical gyroscope
| Parent link: | IOP Conference Series: Materials Science and Engineering Vol. 81 : Radiation-Thermal Effects and Processes in Inorganic Materials.— 2015.— [012096, 8 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , |
| Summary: | Title screen The aim of the research was to determine the effect of temperature on mechanical properties of a micromechanical gyroscope with the sensing element mounted on a silicon wafer, with the crystallographic orientation of (100) (110) (111). The research is of current relevancy since the metrological characteristics that depend on the eigenfrequencies over the full temperature range are to be controlled. The temperature-modal analysis of the micromechanical gyroscope model was performed with ANSYS program. The temperature dependence for eigenfrequencies was obtained. The dependence of the scale factor on temperature for the most temperature-independent variant of sensor positioning on the wafer was determined. The developed mathematical model was used to find the forms of the output oscillations of the gyroscope. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2015
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1088/1757-899X/81/1/012096 http://earchive.tpu.ru/handle/11683/14740 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=643027 |