Symmetry operators of the nonlocal fisher- kolmogorov-petrovskii-piskunov equation with a quadratic operator
| Parent link: | Russian Physics Journal: Scientific Journal Vol. 56, iss. 12.— 2014.— [P. 1415-1426] |
|---|---|
| Autor principal: | |
| Autor corporatiu: | |
| Altres autors: | , |
| Sumari: | Title screen A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher- Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions. Режим доступа: по договору с организацией-держателем ресурса |
| Publicat: |
2014
|
| Matèries: | |
| Accés en línia: | http://elibrary.ru/item.asp?id=21873589 http://dx.doi.org/10.1007/s11182-014-0194-x |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=639912 |
| Sumari: | Title screen A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher- Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1007/s11182-014-0194-x |