Symmetry operators of the nonlocal fisher- kolmogorov-petrovskii-piskunov equation with a quadratic operator

Bibliographic Details
Parent link:Russian Physics Journal: Scientific Journal
Vol. 56, iss. 12.— 2014.— [P. 1415-1426]
Main Author: Levchenko E. A. Evgeny Anatolievich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ)
Other Authors: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
Summary:Title screen
A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher- Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2014
Subjects:
Online Access:http://elibrary.ru/item.asp?id=21873589
http://dx.doi.org/10.1007/s11182-014-0194-x
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=639912