Vascular smooth muscle contraction evoked by cell volume modulation: Role of the cytoskeleton network

Bibliographic Details
Parent link:Cellular Physiology and Biochemistry.— , 1997-
Vol. 21, iss. 1-3.— 2008.— [P. 29–33]
Other Authors: Koltsova S. V., Gusakova S. V., Anfinogenova Ya. J. Yana Jonovna, Baskakov M. B. Mikhail Borisovich, Orlov S. N.
Summary:Title screen
Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca2+ channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca2+-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca2+ channel-mediated contraction of swollen vascular SMC and Ca2+o-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.
Published: 2008
Subjects:
Online Access:http://www.karger.com/Article/Abstract/113744
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=639134