Symmetry operators of a Hartree-type equation with quadratic potential

Bibliographische Detailangaben
Parent link:Siberian Mathematical Journal: Scientific Journal
Vol. 46, iss. 1.— 2005.— [P. 119-132]
1. Verfasser: Lisok A. L. Aleksandr Leonidovich
Weitere Verfasser: Trifonov A. Yu. Andrey Yurievich, Shapovalov A. V. Aleksandr Vasilyevich
Zusammenfassung:Title screen
We study the symmetry properties of a nonstationary one-dimensional Hartree-type equation with quadratic periodic potential and nonlocal nonlinearity. We find an explicit form of a nonlinear evolution operator for this equation and obtain a solution to a Cauchy problem in the class of semiclassically concentrated functions. We find parametric families of nonlinear symmetry operators of a Hartree-type equation (keeping invariant the set of solutions to this equation). Using the symmetry operators, we construct families of exact solutions to the equation. This approach constructively extends the ideas and methods of group analysis to the case of nonlinear integro-differential equations
Режим доступа: по договору с организацией-держателем ресурса
Veröffentlicht: 2005
Schlagworte:
Online-Zugang:http://dx.doi.org/10.1007/s11202-005-0013-2
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636515