Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation

Bibliografiska uppgifter
Parent link:Journal of Mathematical Analysis and Applications: Scientific Journal
Vol. 395, iss. 2.— 2012.— [P. 716-726]
Övriga upphovsmän: Levchenko E. A. Evgeny Anatolievich, Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
Sammanfattning:Title screen
The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation
Режим доступа: по договору с организацией-держателем ресурса
Språk:engelska
Publicerad: 2012
Ämnen:
Länkar:http://dx.doi.org/10.1016/j.jmaa.2012.05.086
Materialtyp: Elektronisk Bokavsnitt
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636445

MARC

LEADER 00000nla0a2200000 4500
001 636445
005 20250327115302.0
035 |a (RuTPU)RU\TPU\network\419 
090 |a 636445 
100 |a 20140124d2012 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation  |f E. A. Levchenko, A. V. Shapovalov, A. Yu. Trifonov 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Mathematical Analysis and Applications  |o Scientific Journal 
463 |t Vol. 395, iss. 2  |v [P. 716-726]  |d 2012 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a integro-differential equation 
610 1 |a интегро-дифференциальные уравнения 
610 1 |a linear equation 
610 1 |a линейные уравнения 
610 1 |a semiclassical approximation 
610 1 |a приближения 
610 1 |a Lie symmetries 
610 1 |a симметрии 
701 1 |a Levchenko  |b E. A.  |c mathematician  |c Assistant of Tomsk Polytechnic University  |f 1988-  |g Evgeny Anatolievich  |3 (RuTPU)RU\TPU\pers\31735 
701 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Trifonov  |b A. Yu.  |c physicist, mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Andrey Yurievich  |3 (RuTPU)RU\TPU\pers\30754 
801 2 |a RU  |b 63413507  |c 20151216  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.jmaa.2012.05.086 
942 |c CF