Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation
| Parent link: | Journal of Mathematical Analysis and Applications: Scientific Journal Vol. 395, iss. 2.— 2012.— [P. 716-726] |
|---|---|
| Övriga upphovsmän: | , , |
| Sammanfattning: | Title screen The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation Режим доступа: по договору с организацией-держателем ресурса |
| Språk: | engelska |
| Publicerad: |
2012
|
| Ämnen: | |
| Länkar: | http://dx.doi.org/10.1016/j.jmaa.2012.05.086 |
| Materialtyp: | Elektronisk Bokavsnitt |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636445 |
MARC
| LEADER | 00000nla0a2200000 4500 | ||
|---|---|---|---|
| 001 | 636445 | ||
| 005 | 20250327115302.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\419 | ||
| 090 | |a 636445 | ||
| 100 | |a 20140124d2012 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drnn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation |f E. A. Levchenko, A. V. Shapovalov, A. Yu. Trifonov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Journal of Mathematical Analysis and Applications |o Scientific Journal | ||
| 463 | |t Vol. 395, iss. 2 |v [P. 716-726] |d 2012 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a integro-differential equation | |
| 610 | 1 | |a интегро-дифференциальные уравнения | |
| 610 | 1 | |a linear equation | |
| 610 | 1 | |a линейные уравнения | |
| 610 | 1 | |a semiclassical approximation | |
| 610 | 1 | |a приближения | |
| 610 | 1 | |a Lie symmetries | |
| 610 | 1 | |a симметрии | |
| 701 | 1 | |a Levchenko |b E. A. |c mathematician |c Assistant of Tomsk Polytechnic University |f 1988- |g Evgeny Anatolievich |3 (RuTPU)RU\TPU\pers\31735 | |
| 701 | 1 | |a Shapovalov |b A. V. |c mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1949- |g Aleksandr Vasilyevich |3 (RuTPU)RU\TPU\pers\31734 | |
| 701 | 1 | |a Trifonov |b A. Yu. |c physicist, mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963- |g Andrey Yurievich |3 (RuTPU)RU\TPU\pers\30754 | |
| 801 | 2 | |a RU |b 63413507 |c 20151216 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1016/j.jmaa.2012.05.086 | |
| 942 | |c CF | ||