Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation

Opis bibliograficzny
Parent link:Journal of Mathematical Analysis and Applications: Scientific Journal
Vol. 395, iss. 2.— 2012.— [P. 716-726]
Kolejni autorzy: Levchenko E. A. Evgeny Anatolievich, Shapovalov A. V. Aleksandr Vasilyevich, Trifonov A. Yu. Andrey Yurievich
Streszczenie:Title screen
The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation
Режим доступа: по договору с организацией-держателем ресурса
Język:angielski
Wydane: 2012
Hasła przedmiotowe:
Dostęp online:http://dx.doi.org/10.1016/j.jmaa.2012.05.086
Format: Elektroniczne Rozdział
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636445