N=4 mechanics, WDVV equations and roots
| Parent link: | Journal of High Energy Physics: Scientific Journal.— , 1997- Vol. 0903.— 2009.— [26 p.] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | , |
| Summary: | Title screen N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U=0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the A_n system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside of reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I_2(p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials. |
| Published: |
2009
|
| Subjects: | |
| Online Access: | http://arxiv.org/abs/0802.4386 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=636148 |