Оценка устойчивости иерархической кластеризации на основе кофенетической корреляции

Bibliographic Details
Parent link:Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XV Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 24-27 апреля 2018 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; под ред. И. А. Курзиной, Г. А. Вороновой.— , 2018
Т. 3 : Математика.— 2018.— [С. 86-88]
Main Author: Тимофеева А. Ю.
Corporate Author: Новосибирский государственный технический университет (НГТУ)
Other Authors: Цыренжапова С. Б.
Summary:Заглавие с экрана
If there are any outliers in the data, hierarchical clustering can produce poor results. In addition, the dendrogram is sensitive to a set of characteristics by which objects are compared. Therefore, it is required to investigate two types of robustness of hierarchical clustering - to a set of objects and to a set of characteristics. For this, an original approach based on the use of bootstrapping is proposed. As an internal criterion for the reliability of hierarchical clustering, the cophenetic correlation coefficient is used. In the simulation study, various methods of hierarchical clustering are compared for robustness of two types. Recommendations are given on the applicability of methods of hierarchical clustering.
Published: 2018
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/50855
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=627623