Geodeics on the coset spaces as a dynamical realization of l-conformal Galilei algebra
| Parent link: | Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XIV Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 25-28 апреля 2017 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; под ред. И. А. Курзиной, Г. А. Вороновой.— , 2017 Т. 3 : Математика.— 2017.— [С. 98-100] |
|---|---|
| Main Author: | |
| Corporate Authors: | , |
| Other Authors: | |
| Summary: | Заглавие с экрана In recent years nonrelativistic conformal Galilei algebras attracted considerable interest [2-7]. The conformal extension of the Galilei algebra is parameterized by a (half)integer parameter l [1]. A pecuilar feature of this algebra is that it involves acceleration generators along with the standard set of generators of Galilei algebra. Most of the examples of dynamical realizations of this algebra encouters with a problem of the precence of higher derivative terms or functional dependence of the acceleration generators. The main goal of this note is to construct metric on the coset space of l-conformal Galilei group and analyze corresponding geodesics equations. Considering geodesics equations as a dynamical realization, we show that it is free of the problems mentioned above. |
| Published: |
2017
|
| Subjects: | |
| Online Access: | http://earchive.tpu.ru/handle/11683/41398 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=622784 |