Nonlocal one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with abnormal diffusion
| Parent link: | Методология проектирования молодежного научно-инновационного пространства как основа подготовки современного инженера=Strategy design of youth science and innovation environment for modern engineer training: сборник научных трудов Международной молодежной научной школы, г. Томск, 2 - 4 апреля 2014 г./ Национальный исследовательский Томский политехнический университет (ТПУ) ; под ред. В. В. Верхотуровой и др.. [С. 176-181].— , 2014 |
|---|---|
| Main Author: | |
| Corporate Authors: | , |
| Other Authors: | , , |
| Summary: | Заглавие с экрана Analytical solutions are constructed for the nonlocal space fractional Fisher-Kolmogorov-Petrovskii- Piskunov equation with abnormaldiffusion. Such solutions allow us to describe quasi-steady state patterns. Special attention is given to the role of fractional derivative. Fractional diffusion equations are useful for applications in which a cloud of particles spreads faster than predicted by the classical equation. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fractional derivative used. Results of numerical simulations and properties of analytical solutions are presented. Influence of the fractional derivative on patterns ordered in space and time is discussed. |
| Published: |
2014
|
| Series: | Integrity of traditions and innovations as the basis for the development of modern engineering science |
| Subjects: | |
| Online Access: | http://earchive.tpu.ru/handle/11683/65004 http://www.lib.tpu.ru/fulltext/c/2014/C07/039.pdf |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=607954 |