Идеи машинного обучения. От теории к алгоритмам, пер. с англ.

Bibliographic Details
Main Author: Шалев-Шварц Ш. Шай
Other Authors: Бен-Давид Ш. Шай
Summary:Машинное обучение - один из самых быстро развивающихся разделов информатики с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами. Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, РАС-байесовский подход и границы сжатия. Издание ориентировано на студентов старших курсов, обучающихся информатике, техническим наукам, математике или статистике, а также может быть полезно исследователям, желающим углубить свои теоретические знания. Предполагается, что читатель знаком с основами теории вероятностей, линейной алгебры, математического анализа и теории алгоритмов.
Language:Russian
Published: Москва, ДМК Пресс, 2019
Subjects:
Format: Book
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=343965