| Summary: | В настоящем учебном пособии представлена краткая историческая справка о развитии нового направления современной математики — фрактальной геометрии. Указаны сферы применения фрактальных множеств в различных областях человеческого знания. Рассморен широкий спектр задач фрактальной геометрии. Подробно изложены десятки алгоритмов построения фрактальных множеств как на вещественной плоскости (кривая Коха, ковер Серпинского и др.), так и на комплексной плоскости (множества Жюлиа, множества Ман-дельброта). Рассмотрены фрактальные размерности (размерность самоподобия, размерность Минковского, размерность Хаусдорфа), описан., алгоритм вычисления константы Фейгенбаума, приведены примеры хаотических отображений, исследована структура периодических точек комплексных многочленов. Создан ряд художественных композиций с использованием фракталов. В книге также приведены задачи для самостоятельного решения. Кроме того, разработана программа спецкурса по фрактальной геометрии для студентов математических специальностей университетов. Пособие адресовано студентам, бакалаврам, магистрам, аспирантам физико-математических специальностей университетов, преподавателям математики и информатики высшей школы, учителям математики и информатики, ученикам средних школ с углубленным изучением математики. |