Control and Optimization Methods for Complex System Resilience

Bibliographic Details
Main Author: Zhai, Chao (Author)
Corporate Author: SpringerLink (Online service)
Summary:XX, 206 p. 68 illus., 62 illus. in color.
text
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Series:Studies in Systems, Decision and Control, 478
Subjects:
Online Access:https://doi.org/10.1007/978-981-99-3053-1
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-981-99-3053-1
003 DE-He213
005 20240312115558.0
007 cr nn 008mamaa
008 230626s2023 si | s |||| 0|eng d
020 |a 9789819930531  |9 978-981-99-3053-1 
024 7 |a 10.1007/978-981-99-3053-1  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC007000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Zhai, Chao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Control and Optimization Methods for Complex System Resilience  |h [electronic resource] /  |c by Chao Zhai. 
250 |a 1st ed. 2023. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2023. 
300 |a XX, 206 p. 68 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Systems, Decision and Control,  |x 2198-4190 ;  |v 478 
505 0 |a Introduction to Complex System Resilience -- Optimal Control Approach to Identifying Cascading Failures -- Jacobian-free Newton-Krylov Method for Risk Identification -- Security Monitoring using Converse Lyapunov Function -- Online Gaussian Process Learning for Security Assessment -- Risk Identification of Cascading Process under Protection -- Model Predictive Approach to Preventing Cascading Process -- Robust Optimization Approach to Uncertain Cascading Process -- Cooperative Control Methods for Relieving System Stress -- Distributed Optimization Approach to System Protection -- Reinforcement Learning Approach to System Recovery -- Summary and Future Work. 
520 |a This book provides a systematic framework to enhance the ability of complex dynamical systems in risk identification, security assessment, system protection, and recovery with the assistance of advanced control and optimization technologies. By treating external disturbances as control inputs, optimal control approach is employed to identify disruptive disturbances, and online security assessment is conducted with Gaussian process and converse Lyapunov function. Model predictive approach and distributed optimization strategy are adopted to protect the complex system against critical contingencies. Moreover, the reinforcement learning method ensures the efficient restoration of complex systems from severe disruptions. This book is meant to be read and studied by researchers and graduates. It offers unique insights and practical methodology into designing and analyzing complex dynamical systems for resilience elevation. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Cooperating objects (Computer systems). 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Cyber-Physical Systems. 
650 2 4 |a Control and Systems Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789819930524 
776 0 8 |i Printed edition:  |z 9789819930548 
776 0 8 |i Printed edition:  |z 9789819930555 
830 0 |a Studies in Systems, Decision and Control,  |x 2198-4190 ;  |v 478 
856 4 0 |u https://doi.org/10.1007/978-981-99-3053-1 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)