Intelligent Software Defect Prediction

Bibliographic Details
Main Authors: Jing, Xiao-Yuan (Author), Chen, Haowen (Author), Xu, Baowen (Author)
Corporate Author: SpringerLink (Online service)
Summary:XI, 205 p. 1 illus.
text
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Subjects:
Online Access:https://doi.org/10.1007/978-981-99-2842-2
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-981-99-2842-2
003 DE-He213
005 20240326123733.0
007 cr nn 008mamaa
008 240117s2023 si | s |||| 0|eng d
020 |a 9789819928422  |9 978-981-99-2842-2 
024 7 |a 10.1007/978-981-99-2842-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Jing, Xiao-Yuan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Intelligent Software Defect Prediction  |h [electronic resource] /  |c by Xiao-Yuan Jing, Haowen Chen, Baowen Xu. 
250 |a 1st ed. 2023. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2023. 
300 |a XI, 205 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1 Introduction -- Chapter 2 Application of Machine Learning Techniques in Intelligent SDP -- Chapter 3 Within-Project Defect Prediction -- Chapter 4 Cross-Project Defect Prediction -- Chapter 5 Heterogeneous Defect Prediction -- Chapter 6 Empirical Findings on HDP Approaches -- Chapter 7 Other Research Questions of SDP -- Chapter 8 Conclusions. 
520 |a With the increasing complexity of and dependency on software, software products may suffer from low quality, high prices, be hard to maintain, etc. Software defects usually produce incorrect or unexpected results and behaviors. Accordingly, software defect prediction (SDP) is one of the most active research fields in software engineering and plays an important role in software quality assurance. Based on the results of SDP analyses, developers can subsequently conduct defect localization and repair on the basis of reasonable resource allocation, which helps to reduce their maintenance costs. This book offers a comprehensive picture of the current state of SDP research. More specifically, it introduces a range of machine-learning-based SDP approaches proposed for different scenarios (i.e., WPDP, CPDP, and HDP). In addition, the book shares in-depth insights into current SDP approaches’ performance and lessons learned for future SDP research efforts. We believe these theoretical analyses and emerging challenges will be of considerable interest to all researchers, graduate students, and practitioners who want to gain deeper insights into and/or find new research directions in SDP. It offers a comprehensive introduction to the current state of SDP and detailed descriptions of representative SDP approaches. 
650 0 |a Computational intelligence. 
650 0 |a Software engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Software Engineering. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
700 1 |a Chen, Haowen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Xu, Baowen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789819928415 
776 0 8 |i Printed edition:  |z 9789819928439 
776 0 8 |i Printed edition:  |z 9789819928446 
856 4 0 |u https://doi.org/10.1007/978-981-99-2842-2 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)