The Art of Deep Learning Image Augmentation: The Seeds of Success

Détails bibliographiques
Auteur principal: Chaki, Jyotismita (Auteur)
Collectivité auteur: SpringerLink (Online service)
Résumé:IX, 142 p. 36 illus., 29 illus. in color.
text
Langue:anglais
Publié: Singapore : Springer Nature Singapore : Imprint: Springer, 2025.
Édition:1st ed. 2025.
Collection:SpringerBriefs in Computational Intelligence,
Sujets:
Accès en ligne:https://doi.org/10.1007/978-981-96-5081-1
Format: Électronique Livre

MARC

LEADER 00000nam a22000005i 4500
001 978-981-96-5081-1
003 DE-He213
005 20250806183246.0
007 cr nn 008mamaa
008 250502s2025 si | s |||| 0|eng d
020 |a 9789819650811  |9 978-981-96-5081-1 
024 7 |a 10.1007/978-981-96-5081-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Chaki, Jyotismita.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Art of Deep Learning Image Augmentation: The Seeds of Success  |h [electronic resource] /  |c by Jyotismita Chaki. 
250 |a 1st ed. 2025. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2025. 
300 |a IX, 142 p. 36 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
341 0 |b Table of contents navigation  |2 onix 
341 0 |b Single logical reading order  |2 onix 
341 0 |b Short alternative textual descriptions  |2 onix 
341 0 |b Use of color is not sole means of conveying information  |2 onix 
341 0 |b Use of high contrast between text and background color  |2 onix 
341 0 |b Next / Previous structural navigation  |2 onix 
341 0 |b All non-decorative content supports reading without sight  |2 onix 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3712 
505 0 |a Chapter 1: Introduction to Deep Learning based Image Augmentation -- Chapter 2: Generative Adversarial Networks (GANs) -- Chapter 3: Autoencoders -- Chapter 4: Applications of Deep Learning Based Image Augmentation -- Chapter 5: Evaluating and Optimizing Deep Learning Image Augmentation Strategies -- Chapter 6: The Future of Deep Learning Image Augmentation. 
520 |a This book addresses the critical challenge of limited training data in deep learning for computer vision by exploring and evaluating various image augmentation techniques, with a particular emphasis on deep learning-based methods. Chapter 1 establishes the core problem of data scarcity, outlining its negative impacts on model performance, and introduces traditional image augmentation techniques like geometric transformations, color space manipulations, and other methods such as noise injection. It highlights the limitations of these traditional approaches, including limited variation, lack of control, and inability to introduce new information, before introducing the advantages of deep learning-based augmentation, such as superior control, task adaptability, enhanced realism, and automation. Chapter 2 delves into GAN-based image augmentation, discussing how GANs generate realistic synthetic images for various applications like super-resolution and image-to-image translation, while also addressing the challenges associated with GAN training and potential future directions. Chapter 3 explores autoencoder-based image augmentation, covering techniques like VAEs, DAEs, and AAEs, and highlighting architectural considerations and challenges such as overfitting. Chapter 4 showcases the diverse applications of deep learning-based image augmentation and how it enhances various computer vision tasks by improving generalization, robustness, and accuracy. Chapter 5 discusses strategies for evaluating and optimizing deep learning image augmentation, including traditional metrics, image quality metrics, and hyperparameter tuning techniques. Finally, Chapter 6 explores cutting-edge advancements, covering AutoAugment, interpretable augmentation, attention-based augmentation, counterfactual augmentation, and human-in-the-loop augmentation, emphasizing the role of human expertise in creating high-quality augmented data. 
532 8 |a Accessibility summary: This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com. 
532 8 |a No reading system accessibility options actively disabled 
532 8 |a Publisher contact for further accessibility information: accessibilitysupport@springernature.com 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Image Processing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789819650804 
776 0 8 |i Printed edition:  |z 9789819650828 
830 0 |a SpringerBriefs in Computational Intelligence,  |x 2625-3712 
856 4 0 |u https://doi.org/10.1007/978-981-96-5081-1 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)