Evolutionary Machine Learning Techniques Algorithms and Applications /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Mirjalili, Seyedali (Editor), Faris, Hossam (Editor), Aljarah, Ibrahim (Editor)
Summary:X, 286 p. 72 illus., 55 illus. in color.
text
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Algorithms for Intelligent Systems,
Subjects:
Online Access:https://doi.org/10.1007/978-981-32-9990-0
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-981-32-9990-0
003 DE-He213
005 20240322003025.0
007 cr nn 008mamaa
008 191111s2020 si | s |||| 0|eng d
020 |a 9789813299900  |9 978-981-32-9990-0 
024 7 |a 10.1007/978-981-32-9990-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Evolutionary Machine Learning Techniques  |h [electronic resource] :  |b Algorithms and Applications /  |c edited by Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah. 
250 |a 1st ed. 2020. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2020. 
300 |a X, 286 p. 72 illus., 55 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms for Intelligent Systems,  |x 2524-7573 
520 |a This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Neural networks (Computer science) . 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
700 1 |a Mirjalili, Seyedali.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Faris, Hossam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Aljarah, Ibrahim.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789813299894 
776 0 8 |i Printed edition:  |z 9789813299917 
776 0 8 |i Printed edition:  |z 9789813299924 
830 0 |a Algorithms for Intelligent Systems,  |x 2524-7573 
856 4 0 |u https://doi.org/10.1007/978-981-32-9990-0 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)