New Developments in Unsupervised Outlier Detection Algorithms and Applications /

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wang, Xiaochun (مؤلف), Wang, Xiali (مؤلف), Wilkes, Mitch (مؤلف)
مؤلف مشترك: SpringerLink (Online service)
الملخص:XXI, 277 p. 138 illus., 120 illus. in color.
text
اللغة:الإنجليزية
منشور في: Singapore : Springer Nature Singapore : Imprint: Springer, 2021.
الطبعة:1st ed. 2021.
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1007/978-981-15-9519-6
التنسيق: الكتروني كتاب الكتروني

MARC

LEADER 00000nam a22000005i 4500
001 978-981-15-9519-6
003 DE-He213
005 20240311140946.0
007 cr nn 008mamaa
008 201124s2021 si | s |||| 0|eng d
020 |a 9789811595196  |9 978-981-15-9519-6 
024 7 |a 10.1007/978-981-15-9519-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Wang, Xiaochun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a New Developments in Unsupervised Outlier Detection  |h [electronic resource] :  |b Algorithms and Applications /  |c by Xiaochun Wang, Xiali Wang, Mitch Wilkes. 
250 |a 1st ed. 2021. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2021. 
300 |a XXI, 277 p. 138 illus., 120 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview and Contributions -- Developments in Unsupervised Outlier Detection Research -- A Fast Distance-Based Outlier Detection Technique Using A Divisive Hierarchical Clustering Algorithm -- A k-Nearest Neighbour Centroid Based Outlier Detection Method -- A Minimum Spanning Tree Clustering Inspired Outlier Detection Technique -- A k-Nearest Neighbour Spectral Clustering Based Outlier Detection Technique -- Enhancing Outlier Detection by Filtering Out Core Points and Border Points -- An Effective Boundary Point Detection Algorithm via k-Nearest Neighbours Based Centroid -- A Nearest Neighbour Classifier Based Automated On-Line Novel Visual Percept Detection Method -- Unsupervised Fraud Detection in Environmental Time Series Data. . 
520 |a This book enriches unsupervised outlier detection research by proposing several new distance-based and density-based outlier scores in a k-nearest neighbors’ setting. The respective chapters highlight the latest developments in k-nearest neighbor-based outlier detection research and cover such topics as our present understanding of unsupervised outlier detection in general; distance-based and density-based outlier detection in particular; and the applications of the latest findings to boundary point detection and novel object detection. The book also offers a new perspective on bridging the gap between k-nearest neighbor-based outlier detection and clustering-based outlier detection, laying the groundwork for future advances in unsupervised outlier detection research. The authors hope the algorithms and applications proposed here will serve as valuable resources for outlier detection researchers for years to come. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Engineering  |x Data processing. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Engineering. 
700 1 |a Wang, Xiali.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wilkes, Mitch.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811595189 
776 0 8 |i Printed edition:  |z 9789811595202 
776 0 8 |i Printed edition:  |z 9789811595219 
856 4 0 |u https://doi.org/10.1007/978-981-15-9519-6 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)