Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting /
| Главные авторы: | , , |
|---|---|
| Автор-организация: | |
| Примечания: | XXI, 293 p. 141 illus., 125 illus. in color. text |
| Язык: | английский |
| Опубликовано: |
Singapore :
Springer Nature Singapore : Imprint: Springer,
2020.
|
| Издание: | 1st ed. 2020. |
| Предметы: | |
| Online-ссылка: | https://doi.org/10.1007/978-981-15-2624-4 |
| Формат: | Электронный ресурс Книга |
Оглавление:
- Overview for Smart Meter Data Analytics
- Smart Meter Data Compression Based on Load Feature Identification
- A Combined Data-Driven Approach for Electricity Theft Detection
- GAN-based Model for Residential Load Generation
- Ensemble Clustering for Individual Electricity Consumption Patterns Extraction
- Sparse and Redundant Representation-Based Partial Usage Pattern Extraction
- Data-Driven Personalized Price Design in Retail Market Using Smart Meter Data
- Deep Learning-Based Socio-demographic Information Identification
- Cross-domain Feature Selection and Coding for Household Energy Behavior
- Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications
- Enhancing Short-term Probabilistic Residential Load Forecasting with Quantile LSTM
- An Ensemble Forecasting Method for the Aggregated Load With Subprofiles
- Prospects of Future Research Issues on Smart Meter Data Analytics.