Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting /
| Główni autorzy: | , , | 
|---|---|
| Korporacja: | |
| Streszczenie: | XXI, 293 p. 141 illus., 125 illus. in color. text  | 
| Język: | angielski | 
| Wydane: | 
        Singapore :
          Springer Nature Singapore : Imprint: Springer,
    
        2020.
     | 
| Wydanie: | 1st ed. 2020. | 
| Hasła przedmiotowe: | |
| Dostęp online: | https://doi.org/10.1007/978-981-15-2624-4 | 
| Format: | Elektroniczne Książka | 
                Spis treści: 
            
                  - Overview for Smart Meter Data Analytics
 - Smart Meter Data Compression Based on Load Feature Identification
 - A Combined Data-Driven Approach for Electricity Theft Detection
 - GAN-based Model for Residential Load Generation
 - Ensemble Clustering for Individual Electricity Consumption Patterns Extraction
 - Sparse and Redundant Representation-Based Partial Usage Pattern Extraction
 - Data-Driven Personalized Price Design in Retail Market Using Smart Meter Data
 - Deep Learning-Based Socio-demographic Information Identification
 - Cross-domain Feature Selection and Coding for Household Energy Behavior
 - Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications
 - Enhancing Short-term Probabilistic Residential Load Forecasting with Quantile LSTM
 - An Ensemble Forecasting Method for the Aggregated Load With Subprofiles
 - Prospects of Future Research Issues on Smart Meter Data Analytics.