Battery Management Algorithm for Electric Vehicles

Бібліографічні деталі
Автор: Xiong, Rui (Автор)
Співавтор: SpringerLink (Online service)
Резюме:XVII, 297 p. 193 illus., 122 illus. in color.
text
Мова:Англійська
Опубліковано: Singapore : Springer Nature Singapore : Imprint: Springer, 2020.
Редагування:1st ed. 2020.
Предмети:
Онлайн доступ:https://doi.org/10.1007/978-981-15-0248-4
Формат: Електронний ресурс Книга

MARC

LEADER 00000nam a22000005i 4500
001 978-981-15-0248-4
003 DE-He213
005 20240702120453.0
007 cr nn 008mamaa
008 190923s2020 si | s |||| 0|eng d
020 |a 9789811502484  |9 978-981-15-0248-4 
024 7 |a 10.1007/978-981-15-0248-4  |2 doi 
050 4 |a TJ165 
072 7 |a THRH  |2 bicssc 
072 7 |a TEC031000  |2 bisacsh 
072 7 |a THY  |2 thema 
082 0 4 |a 621.3126  |2 23 
100 1 |a Xiong, Rui.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Battery Management Algorithm for Electric Vehicles  |h [electronic resource] /  |c by Rui Xiong. 
250 |a 1st ed. 2020. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2020. 
300 |a XVII, 297 p. 193 illus., 122 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview of battery and its management -- Battery test -- Modeling theory of lithium-ion batteries -- Battery SOC and SOH estimation -- State estimation of battery system -- Remaining useful life prediction of lithium-ion batteries -- Low-temperature heating and optimal charging methods for lithium-ion batteries -- Algorithm development, test and evaluation. 
520 |a This book systematically introduces readers to the core algorithms of battery management system (BMS) for electric vehicles. These algorithms cover most of the technical bottlenecks encountered in BMS applications, including battery system modeling, state of charge (SOC) and state of health (SOH) estimation, state of power (SOP) estimation, remaining useful life (RUL) prediction, heating at low temperature, and optimization of charging. The book not only presents these algorithms, but also discusses their background, as well as related experimental and hardware developments. The concise figures and program codes provided make the calculation process easy to follow and apply, while the results obtained are presented in a comparative way, allowing readers to intuitively grasp the characteristics of different algorithms. Given its scope, the book is intended for researchers, senior undergraduate and graduate students, as well as engineers in the fields of electric vehiclesand energy storage. 
650 0 |a Energy storage. 
650 0 |a Automotive engineering. 
650 0 |a Control engineering. 
650 0 |a Electrical engineering. 
650 1 4 |a Mechanical and Thermal Energy Storage. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Control and Systems Theory. 
650 2 4 |a Electrical and Electronic Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811502477 
776 0 8 |i Printed edition:  |z 9789811502491 
776 0 8 |i Printed edition:  |z 9789811502507 
856 4 0 |u https://doi.org/10.1007/978-981-15-0248-4 
912 |a ZDB-2-ENE 
912 |a ZDB-2-SXEN 
950 |a Energy (SpringerNature-40367) 
950 |a Energy (R0) (SpringerNature-43717)