Practical Text Analytics Maximizing the Value of Text Data /

Bibliographic Details
Main Authors: Anandarajan, Murugan (Author), Hill, Chelsey (Author), Nolan, Thomas (Author)
Corporate Author: SpringerLink (Online service)
Summary:XXVIII, 285 p. 265 illus., 157 illus. in color.
text
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Advances in Analytics and Data Science, 2
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-95663-3
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-95663-3
003 DE-He213
005 20240627162330.0
007 cr nn 008mamaa
008 181019s2019 sz | s |||| 0|eng d
020 |a 9783319956633  |9 978-3-319-95663-3 
024 7 |a 10.1007/978-3-319-95663-3  |2 doi 
050 4 |a QA76.9.Q36 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 001.422  |2 23 
082 0 4 |a 005.7  |2 23 
100 1 |a Anandarajan, Murugan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Text Analytics  |h [electronic resource] :  |b Maximizing the Value of Text Data /  |c by Murugan Anandarajan, Chelsey Hill, Thomas Nolan. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXVIII, 285 p. 265 illus., 157 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Analytics and Data Science,  |x 2522-0241 ;  |v 2 
505 0 |a Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics. 
520 |a This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information. 
650 0 |a Quantitative research. 
650 0 |a Business information services. 
650 0 |a Statistics . 
650 1 4 |a Data Analysis and Big Data. 
650 2 4 |a Business Information Systems. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
700 1 |a Hill, Chelsey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nolan, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319956626 
776 0 8 |i Printed edition:  |z 9783319956640 
776 0 8 |i Printed edition:  |z 9783030070809 
830 0 |a Advances in Analytics and Data Science,  |x 2522-0241 ;  |v 2 
856 4 0 |u https://doi.org/10.1007/978-3-319-95663-3 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)